The existence of \(\mathbb{F}_q\)-primitive points on curves using freeness
From MaRDI portal
Publication:2148425
DOI10.5802/CRMATH.328OpenAlexW4283372520MaRDI QIDQ2148425
Stephen D. Cohen, Giorgos Kapetanakis, Lucas Reis
Publication date: 24 June 2022
Published in: Comptes Rendus. Mathématique. Académie des Sciences, Paris (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2108.07373
Exponential sums (11T23) Structure theory for finite fields and commutative rings (number-theoretic aspects) (11T30) Congruences; primitive roots; residue systems (11A07)
Related Items (2)
Pairs of \(r\)-primitive and \(k\)-normal elements in finite fields ⋮ r -primitive k -normal elements in arithmetic progressions over finite fields
Cites Work
- Unnamed Item
- Elements of high order in Artin-Schreier extensions of finite fields \(\mathbb{F}_q\)
- The orders of related elements of a finite field
- Linear combinations of primitive elements of a finite field
- Elements of high order in finite fields of the form \(\mathbb F_q[x/(x^m-a)\)]
- On special pairs of primitive elements over a finite field
- Variations of the primitive normal basis theorem
- Existence and properties of \(k\)-normal elements over finite fields
- Handbook of Finite Fields
- Primitive points on elliptic curves
- Elements of provable high orders in finite fields
- THE PRIMITIVE NORMAL BASIS THEOREM – WITHOUT A COMPUTER
- Primitive values of quadratic polynomials in a finite field
- The translate and line properties for 2-primitive elements in quadratic extensions
- FINITE FIELD EXTENSIONS WITH THE LINE OR TRANSLATE PROPERTY FOR -PRIMITIVE ELEMENTS
- The trace of 2-primitive elements of finite fields
- A proof of the conjecture of Cohen and Mullen on sums of primitive roots
- Primitive Roots in a Finite Field
This page was built for publication: The existence of \(\mathbb{F}_q\)-primitive points on curves using freeness