Quantitative De Giorgi methods in kinetic theory
DOI10.5802/jep.203zbMath1495.35109arXiv2103.09646OpenAlexW3136689319MaRDI QIDQ2154282
Jessica Guerand, Clément Mouhot
Publication date: 19 July 2022
Published in: Journal de l'École Polytechnique -- Mathématiques (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2103.09646
trajectoriesFokker-Planck equationHölder continuitykinetic theoryKolmogorov equationweak Harnack inequalityMoser iterationultraparabolic equationshypoelliptic equationsaveraging lemmaDe Giorgi method
Smoothness and regularity of solutions to PDEs (35B65) A priori estimates in context of PDEs (35B45) Ultraparabolic equations, pseudoparabolic equations, etc. (35K70) Integro-partial differential equations (35R09) Fokker-Planck equations (35Q84)
Related Items (10)
Cites Work
- The \(C^{\alpha}\) regularity of weak solutions of ultraparabolic equations
- The \(C^{\alpha}\) regularity of a class of non-homogeneous ultraparabolic equations
- Zufällige Bewegungen. (Zur Theorie der Brownschen Bewegung.)
- Quantitative parabolic regularity à la De Giorgi
- Hypocoercivity without confinement
- The weak Harnack inequality for the Boltzmann equation without cut-off
- Hypoelliptic second order differential equations
- A note on the Harnack inequality for elliptic equations in divergence form
- Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation
- A survey on the classical theory for Kolmogorov equation
- THE MOSER'S ITERATIVE METHOD FOR A CLASS OF ULTRAPARABOLIC EQUATIONS
- A harnack inequality for parabolic differential equations
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Quantitative De Giorgi methods in kinetic theory