High points of a random model of the Riemann-zeta function and Gaussian multiplicative chaos
DOI10.1016/j.spa.2022.04.017zbMath1498.60335arXiv1906.08573OpenAlexW2951343529WikidataQ114130732 ScholiaQ114130732MaRDI QIDQ2157324
Louis-Pierre Arguin, Lisa Hartung, Nicola Kistler
Publication date: 27 July 2022
Published in: Stochastic Processes and their Applications (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1906.08573
extreme valuesbranching Brownian motionRiemann-zeta functionhigh points, Gaussian multiplicative chaos
Extreme value theory; extremal stochastic processes (60G70) (zeta (s)) and (L(s, chi)) (11M06) Disordered systems (random Ising models, random Schrödinger operators, etc.) in equilibrium statistical mechanics (82B44) Branching processes (Galton-Watson, birth-and-death, etc.) (60J80)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Critical Gaussian multiplicative chaos: convergence of the derivative martingale
- Gaussian multiplicative chaos and applications: a review
- The circular unitary ensemble and the Riemann zeta function: the microscopic landscape and a new approach to ratios
- Maxima of a randomized Riemann zeta function, and branching random walks
- On the rate of convergence in the multivariate CLT
- Gaussian multiplicative chaos revisited
- On the extreme values of the Riemann zeta function on random intervals of the critical line
- High points of branching Brownian motion and McKean's Martingale in the Bovier-Hartung extremal process
- The Riemann zeta function and Gaussian multiplicative chaos: statistics on the critical line
- On intermediate level sets of two-dimensional discrete Gaussian free field
- Freezing transitions and extreme values: random matrix theory, and disordered landscapes
- Maximum of the Riemann Zeta Function on a Short Interval of the Critical Line