Symmetric finite representability of \(\ell^p\)-spaces in rearrangement invariant spaces on \((0,\infty)\)
From MaRDI portal
Publication:2160215
DOI10.1007/s00208-021-02277-5OpenAlexW3203496735MaRDI QIDQ2160215
Publication date: 3 August 2022
Published in: Mathematische Annalen (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2104.13077
Banach latticerearrangement invariant spaceLorentz spaceOrlicz spaceshift operatorBoyd indicesdilation operatorfinite representabilityapproximate eigenvalue\( \ell^p\)
Related Items
A characterization of \(\ell^p\)-spaces symmetrically finitely represented in symmetric sequence spaces ⋮ On various notions of representability of \(l_r\)-spaces in Orlicz function spaces ⋮ Spectral properties of the dilation operator in rearrangement invariant spaces of fundamental type ⋮ On lattice properties of the Lorentz spaces \(L_{p,q}\)
Cites Work
- Asymptotic theory of finite dimensional normed spaces. With an appendix by M. Gromov: Isoperimetric inequalities in Riemannian manifolds
- Theorems and problems in functional analysis. Transl. from the Russian by Harold H. McFaden
- Not every Banach space contains an imbedding of \(l_p\) or \(c_0\)
- Sous-espaces de dimension finie des espaces de Banach reticules
- On a theorem of J. L. Krivine concerning block finite representability of \(\ell^p\) general Banach spaces
- Indices for the Orlicz spaces
- Spaces \(\Lambda_\alpha\)(X) and interpolation
- On the theory of spaces \(\Lambda\)
- New examples of K-monotone weighted Banach couples
- Calderón couples of rearrangement invariant spaces
- Finite representability of $ℓ_{p}$-spaces in symmetric spaces
- Real method of interpolation on subcouples of codimension one
- A note on norms of compression operators on function spaces
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item