On the space of locally Sobolev-Slobodeckij functions
From MaRDI portal
Publication:2162895
DOI10.1155/2022/9094502zbMath1503.46027arXiv1806.02188OpenAlexW4285800789MaRDI QIDQ2162895
Publication date: 9 August 2022
Published in: Journal of Function Spaces (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1806.02188
Sobolev-Slobodeckij spaceslocally Sobolev-Slobodeckij functionsSobolev spaces of sections of vector bundles on compact manifolds
Related Items (2)
Non-CMC solutions of the Einstein constraint equations on compact manifolds with apparent horizon boundaries ⋮ On mixed and transverse ray transforms on orientable surfaces
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Distributions. Generalized functions with applications in Sobolev spaces
- Hitchhiker's guide to the fractional Sobolev spaces
- Multiplication in Sobolev spaces, revisited
- Functional analysis, Sobolev spaces and partial differential equations
- An introduction to partial differential equations
- Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces
- A note on the Moser-Trudinger inequality in Sobolev-Slobodeckij spaces in dimension one
- Some remarks on \(W^{s,p}\) interior elliptic regularity estimates
- Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces
- Espaces d'interpolation et théorème de Soboleff
- Trudinger-Moser inequalities in fractional Sobolev-Slobodeckij spaces and multiplicity of weak solutions to the fractional-Laplacian equation
- Distributions and Operators
- ROUGH SOLUTIONS OF THE EINSTEIN CONSTRAINT EQUATIONS ON COMPACT MANIFOLDS
- Topological Vector Spaces and Their Applications
- On the Moser-Trudinger inequality in fractional Sobolev-Slobodeckij spaces
This page was built for publication: On the space of locally Sobolev-Slobodeckij functions