Equivariant K-theory approach to \(\imath\)-quantum groups
From MaRDI portal
Publication:2165822
DOI10.4171/PRIMS/58-3-6WikidataQ114249070 ScholiaQ114249070MaRDI QIDQ2165822
Haitao Ma, Husileng Xiao, Zhaobing Fan
Publication date: 23 August 2022
Published in: Publications of the Research Institute for Mathematical Sciences, Kyoto University (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1911.00851
Quantum groups (quantized function algebras) and their representations (20G42) Ring-theoretic aspects of quantum groups (16T20)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Quantum symmetric Kac-Moody pairs
- ``Lagrangian construction for representations of Hecke algebras
- Geometric Schur duality of classical type
- A geometric setting for the quantum deformation of \(\mathrm{GL}_n\)
- Equivariant K-theory and representations of Hecke algebras. II
- Proof of the Deligne-Langlands conjecture for Hecke algebras
- Hall algebras and quantum groups
- Affine quantum groups and equivariant \(K\)-theory
- Categorification of quantum symmetric pairs. I
- Canonical bases arising from quantum symmetric pairs
- Universal K-matrix for quantum symmetric pairs
- Symmetric pairs for quantized enveloping algebras
- Quantum groups via Hall algebras of complexes.
- A categorification of quantum \(\text{sl}(n)\)
- Geometric Schur duality of classical type, II
- Canonical Bases Arising from Quantized Enveloping Algebras
- A diagrammatic approach to categorification of quantum groups I
- Equivariant K-Theory and Representations of Hecke Algebras
- Quivers, Perverse Sheaves, and Quantized Enveloping Algebras
- Représentations de groupes quantiques et permutations
- Quiver varieties and symmetric pairs
- A new approach to Kazhdan-Lusztig theory of type B via quantum symmetric pairs
- Schur Algebras and Quantum Symmetric Pairs With Unequal Parameters
- THE -SCHUR ALGEBRAS AND -SCHUR DUALITIES OF FINITE TYPE
- Affine flag varieties and quantum symmetric pairs
- An elementary construction of monomial bases of modified quantum affine gln
- Hall algebras and quantum symmetric pairs I: Foundations
This page was built for publication: Equivariant K-theory approach to \(\imath\)-quantum groups