A modular approach to the generalized Ramanujan-Nagell equation
From MaRDI portal
Publication:2166103
DOI10.1016/j.indag.2022.04.005zbMath1502.11039arXiv2111.05626OpenAlexW3211471107WikidataQ113872387 ScholiaQ113872387MaRDI QIDQ2166103
Gökhan Soydan, Elif Kızıldere Mutlu, Maohua Le
Publication date: 23 August 2022
Published in: Indagationes Mathematicae. New Series (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2111.05626
Cites Work
- Unnamed Item
- The \(L\)-functions and Modular Forms Database project
- Heegner points and derivatives of \(L\)-series
- The Magma algebra system. I: The user language
- Modular elliptic curves and Fermat's Last Theorem
- Ring-theoretic properties of certain Hecke algebras
- Some exponential diophantine equations. I: The equation \(D_1x^2 - D_2y^2 = \lambda k^z\)
- On the generalized Ramanujan-Nagell equation \(x^2+(2c-1)^m=c^n\)
- The Generalized Fermat Equation
- Generalized Fermat equations: A miscellany
- Sums of two $S$-units via Frey-Hellegouarch curves
- Ternary Diophantine Equations via Galois Representations and Modular Forms
- A NOTE ON THE DIOPHANTINE EQUATION
- On the Equations zm = F (x, y ) and Axp + Byq = Czr
- Computing all S-integral points on elliptic curves
- A brief survey on the generalized Lebesgue-Ramanujan-Nagell equation
- Quelques résultats sur les équations axp + byp = cz2
- A NOTE ON THE DIOPHANTINE EQUATION
- Number Theory
This page was built for publication: A modular approach to the generalized Ramanujan-Nagell equation