Hirzebruch-Riemann-Roch and Lefschetz type formulas for finite dimensional algebras
DOI10.1016/j.jalgebra.2022.06.013OpenAlexW3080399238MaRDI QIDQ2168808
Publication date: 26 August 2022
Published in: Journal of Algebra (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2008.11457
(Co)homology of rings and associative algebras (e.g., Hochschild, cyclic, dihedral, etc.) (16E40) Homological functors on modules (Tor, Ext, etc.) in associative algebras (16E30) Representations of associative Artinian rings (16G10) Differential graded algebras and applications (associative algebraic aspects) (16E45) Chain complexes (category-theoretic aspects), dg categories (18G35)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Chern characters and Hirzebruch-Riemann-Roch formula for matrix factorizations
- The Mukai pairing. II: The Hochschild-Kostant-Rosenberg isomorphism.
- A proof of the strong no loop conjecture.
- Lefschetz fixed point theorems for Fourier-Mukai functors and DG algebras
- Tame algebras and integral quadratic forms
- The Mukai pairing. I: A categorical approach
- A generalized Hirzebruch Riemann-Roch theorem
- On the cyclic homology of exact categories
- The trace of the Coxeter matrix and Hochschild cohomology
- Invariance and localization for cyclic homology of DG algebras
- A bimodule approach to the strong no loop conjecture.
- Lefschetz and Hirzebruch-Riemann-Roch formulas via noncommutative motives
- Lefschetz type formulas for dg-categories
- Nilpotente Elemente in Ringen von endlicher globaler Dimension
- A Riemann-Roch theorem for dg algebras
- The Atiyah class, Hochschild cohomology and the Riemann-Roch theorem
- Deriving DG categories
- Hirzebruch-Riemann-Roch-type formula for DG algebras
- HOCHSCHILD (CO)HOMOLOGY DIMENSION
This page was built for publication: Hirzebruch-Riemann-Roch and Lefschetz type formulas for finite dimensional algebras