Classification of \(L\)-functions of degree 2 and conductor 1
From MaRDI portal
Publication:2172211
DOI10.1016/j.aim.2022.108569zbMath1503.11122arXiv2009.12329OpenAlexW3088084256WikidataQ113880900 ScholiaQ113880900MaRDI QIDQ2172211
Jerzy Kaczorowski, Alberto Perelli
Publication date: 15 September 2022
Published in: Advances in Mathematics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2009.12329
Other Dirichlet series and zeta functions (11M41) Langlands (L)-functions; one variable Dirichlet series and functional equations (11F66)
Related Items (3)
An extension of Venkatesh’s converse theorem to the Selberg class ⋮ A converse theorem for degree 2 elements of the Selberg class with restricted gamma factor ⋮ Riemann-type functional equations. Julia line and counting formulae
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Twists and resonance of \(L\)-functions. I.
- Non-linear twists of \(L\)-functions: a survey
- On the structure of the Selberg class. VII: \(1<d<2\)
- A survey of the Selberg class of \(L\)-functions. I
- On \(L\)-functions with poles satisfying Maaß's functional equation
- On the Selberg class of Dirichlet series: Small degrees
- On the structure of the Selberg class. I: \(0\leq d\leq 1\).
- A weak converse theorem for degree 2 \(L\)-functions with conductor 1
- Converse theorems: from the Riemann zeta function to the Selberg class
- Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen
- Automorphic forms on GL (2)
- Über eine neue Art von nichtanalytischen automorphen Funktionen und die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen. (On a new type of nonanalytic automorphic functions and the determination of Dirichlet series by functional equations)
- An Introduction to Special Functions
- Twists, Euler products and a converse theorem for L-functions of degree 2
- Linear independence of L-functions
- Axiomatic Theory of L-Functions: the Selberg Class
- On the structure of the Selberg class, IV: basic invariants
- Twists and Resonance ofL‐Functions, II
- On the structure of the Selberg class, VI: non-linear twists
- The standard twist of $L$-functions revisited
- Mittag-Leffler Functions, Related Topics and Applications
- Period functions for Maass wave forms. I.
This page was built for publication: Classification of \(L\)-functions of degree 2 and conductor 1