Dirac structures and Nijenhuis operators
From MaRDI portal
Publication:2172496
DOI10.1007/s00209-022-03078-5OpenAlexW3200858915WikidataQ114231058 ScholiaQ114231058MaRDI QIDQ2172496
Thiago Drummond, Clarice Netto, Henrique Bursztyn
Publication date: 15 September 2022
Published in: Mathematische Zeitschrift (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2109.06330
Poisson-Nijenhuis structuresDirac-Nijenhuis structuresholomorphic Dirac structurespresymplectic-Nijenhuis groupoids
Poisson manifolds; Poisson groupoids and algebroids (53D17) Deformations of general structures on manifolds (58H15) Topological groupoids (including differentiable and Lie groupoids) (22A22)
Related Items
Nijenhuis tensor and invariant polynomials, Courant-Nijenhuis algebroids, Integrating Nijenhuis structures, Poisson quasi-Nijenhuis deformations of the canonical PN structure
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Generalized Kähler geometry
- Generalized complex structures and Lie brackets
- Multiplicative forms at the infinitesimal level
- Integration of holomorphic Lie algebroids
- Quantization of Poisson manifolds from the integrability of the modular function
- Poisson quasi-Nijenhuis manifolds
- Lifting geometric objects to a cotangent bundle, and the geometry of the cotangent bundle of a tangent bundle
- Hamiltonian operators and algebraic structures related to them
- Dirac-Nijenhuis manifolds
- Complete integrability from Poisson-Nijenhuis structures on compact Hermitian symmetric spaces
- Poisson geometry from a Dirac perspective
- Integrability of Poisson brackets
- A family of Poisson structures on Hermitian symmetric spaces
- Gauge equivalence of Dirac structures and symplectic groupoids
- Integration of twisted Dirac brackets
- Poisson quasi-Nijenhuis manifolds and the Toda system
- Lie theory of multiplicative tensors
- Some properties of Dirac-Nijenhuis manifolds
- Integrable hierarchies and the modular class
- The Lie bialgebroid of a Poisson-Nijenhuis manifold
- Dirac–Nijenhuis structures
- Multiplicative integrable models from Poisson–Nijenhuis structures
- On the local structure of Dirac manifolds
- Holomorphic Poisson Manifolds and Holomorphic Lie Algebroids
- A simple model of the integrable Hamiltonian equation
- Flat Partial Connections and Holomorphic Structures in C ∞ Vector Bundles
- Dirac Manifolds
- Courant algebroid and Lie bialgebroid contractions
- A brief introduction to Dirac manifolds