Joint extreme values of \(L\)-functions
DOI10.1007/s00209-022-03089-2zbMath1504.11093arXiv2001.09274OpenAlexW3003031957WikidataQ113906043 ScholiaQ113906043MaRDI QIDQ2172510
Kamalakshya Mahatab, Akshaa Vatwani, Łukasz Pańkowski
Publication date: 15 September 2022
Published in: Mathematische Zeitschrift (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2001.09274
Other Dirichlet series and zeta functions (11M41) Langlands (L)-functions; one variable Dirichlet series and functional equations (11F66) Selberg zeta functions and regularized determinants; applications to spectral theory, Dirichlet series, Eisenstein series, etc. (explicit formulas) (11M36)
Related Items (2)
Cites Work
- Unnamed Item
- Unnamed Item
- Lower bounds for the maximum of the Riemann zeta function along vertical lines
- Large values of \(L\)-functions from the Selberg class
- Value distribution of \(L\)-functions
- Extreme values of zeta and \(L\)-functions
- Extreme values of the Riemann zeta function
- On the prime number theorem for the Selberg class
- On the extreme values of the Riemann zeta function on random intervals of the critical line
- Extreme values of the Riemann zeta function and its argument
- On the distribution of zeros of linear combinations of Euler products
- Selberg's orthonormality conjecture and joint universality of \(L\)-functions
- Large greatest common divisor sums and extreme values of the Riemann zeta function
- Omega theorems for a class of \(L\)-functions. (A note on the Rankin-Selberg zeta-function)
- EXTREME VALUES OF L-FUNCTIONS FROM THE SELBERG CLASS
- Sixth norm of a Steinhaus chaos
- A ZERO DENSITY ESTIMATE FOR THE SELBERG CLASS
- An arithmetical mapping and applications to Ω-results for the Riemann zeta function
- Extreme values of the Dedekind zeta function
- On the distribution of the values of Riemann's Zeta-function
- The Best Quantitative Kronecker's Theorem
- Maximum of the Riemann Zeta Function on a Short Interval of the Critical Line
- Exposé Bourbaki 1161 : The Riemann zeta function in short intervals after Najnudel, and Arguin, Belius, Bourgade, Radziwiłł, and Soundararajan
- On large values of L(σ,χ)
- Extreme Values of the Riemann Zeta Function on the 1-Line
- Sommes de Gál et applications
- Some open questions in analysis for Dirichlet series
- A Log-Free Zero-Density Estimate and Small Gaps in Coefficients of L-Functions
- Ω-theorems for the Riemann zeta-function
- LARGE VALUES OF L-FUNCTIONS ON THE 1-LINE
- Large oscillations of the argument of the Riemann zeta‐function
This page was built for publication: Joint extreme values of \(L\)-functions