Weight decompositions of Thom spaces of vector bundles in rational homotopy
From MaRDI portal
Publication:2173522
DOI10.1007/s40062-019-00243-2zbMath1440.55010arXiv1610.02917OpenAlexW2963006598WikidataQ125624166 ScholiaQ125624166MaRDI QIDQ2173522
Joana Cirici, Federico Cantero Morán, Urtzi Buijs
Publication date: 16 April 2020
Published in: Journal of Homotopy and Related Structures (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1610.02917
rational homotopy theoryThom spacesmixed Hodge structuressmoothing theoryThom isomorphism theoremweight decompositionsmotivic Thom spaces
Related Items (3)
Positive weights and self-maps ⋮ Degrees of maps and multiscale geometry ⋮ Rational homotopy via Sullivan models and enriched Lie algebras
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- \(E_{1}\)-formality of complex algebraic varieties
- Homotopy transfer and rational models for mapping spaces
- The rational homotopy of Thom spaces and the smoothing of homology classes
- Sur la théorie de Hodge-Deligne. (On the Hodge-Deligne theory)
- The de Rham homotopy theory of complex algebraic varieties. II
- \(\mathbb{A}^1\)-homotopy theory
- Infinitesimal computations in topology
- The algebraic topology of smooth algebraic varieties
- Rational homotopy and unique factorization
- Rational homotopy type and self maps
- Obstructions to homotopy equivalences
- \(p\)-universal spaces and rational homotopy types
- Mixed motives and their realization in derived categories
- Homological stability for spaces of embedded surfaces
- Rational homotopy theory
- Théorie de Hodge. II. (Hodge theory. II)
- Cobordismes de plongements et produits homotopiques. (Cobordisms of embeddings and homotopic products)
- Théorie de Hodge. III
- Quelques propriétés globales des variétés différentiables
- Lie-model for Thom spaces of tangent bundles
- Mixed Hodge structures and formality of symmetric monoidal functors
- Mixed Hodge Structures
- Algebraic Operads
This page was built for publication: Weight decompositions of Thom spaces of vector bundles in rational homotopy