Multi-view kernel consensus for data analysis
From MaRDI portal
Publication:2175021
DOI10.1016/j.acha.2019.01.001zbMath1434.68537arXiv1606.08819OpenAlexW2911110570WikidataQ115102978 ScholiaQ115102978MaRDI QIDQ2175021
Yariv Aizenbud, Ofir Lindenbaum, Yoel Shkolnisky, Avi Silberschatz, Moshe Salhov, Amir Z. Averbuch
Publication date: 27 April 2020
Published in: Applied and Computational Harmonic Analysis (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1606.08819
Related Items
Local conformal autoencoder for standardized data coordinates, Gaussian bandwidth selection for manifold learning and classification, Kernel-based parameter estimation of dynamical systems with unknown observation functions
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Local kernels and the geometric structure of data
- Anisotropic diffusion on sub-manifolds with application to Earth structure classification
- Orientability and diffusion maps
- Non-linear independent component analysis with diffusion maps
- Data dimensionality estimation methods: A survey.
- Learning the geometry of common latent variables using alternating-diffusion
- Principal component analysis.
- Support-vector networks
- Diffusion maps for changing data
- Intrinsic modeling of stochastic dynamical systems using empirical geometry
- Diffusion maps
- Spectral independent component analysis
- Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis
- DANCo: an intrinsic dimensionality estimator exploiting angle and norm concentration
- An Intrinsic Dimensionality Estimator from Near-Neighbor Information
- Stastical Estimation of the Intrinsic Dimensionality of a Noisy Signal Collection
- Laplacian Eigenmaps for Dimensionality Reduction and Data Representation
- Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data
- An Algorithm for Finding Intrinsic Dimensionality of Data
- The elements of statistical learning. Data mining, inference, and prediction