The étale fundamental groupoid as a 2-terminal costack
From MaRDI portal
Publication:2175458
DOI10.1215/21562261-2017-0041zbMath1472.14026arXiv1412.5473OpenAlexW1563135746MaRDI QIDQ2175458
Publication date: 29 April 2020
Published in: Kyoto Journal of Mathematics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1412.5473
Étale and other Grothendieck topologies and (co)homologies (14F20) Homotopy theory and fundamental groups in algebraic geometry (14F35)
Related Items
Cites Work
- The fundamental groupoid as a terminal costack
- Two-dimensional sheaf theory
- Etale homotopy
- Séminaire de géométrie algébrique du Bois Marie 1960/61 (SGA 1), dirigé par Alexander Grothendieck. Augmenté de deux exposés de M. Raynaud. Revêtements étales et groupe fondamental. Exposés I à XIII. (Seminar on algebraic geometry at Bois Marie 1960/61 (SGA 1), directed by Alexander Grothendieck. Enlarged by two reports of M. Raynaud. Ètale coverings and fundamental group)
- Galois Categories
- Pseudo limits, biadjoints, and pseudo algebras: categorical foundations of conformal field theory
- Profinite Groups
- Loop spaces, characteristic classes and geometric quantization