Deformations on symbolic Cantor sets and ultrametric spaces
From MaRDI portal
Publication:2186291
DOI10.1007/s40840-019-00863-0zbMath1441.30089arXiv1911.01017OpenAlexW2993966779WikidataQ126627856 ScholiaQ126627856MaRDI QIDQ2186291
Xining Li, Qingshan Zhou, Yaxiang Li
Publication date: 9 June 2020
Published in: Bulletin of the Malaysian Mathematical Sciences Society. Second Series (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1911.01017
Quasiconformal mappings in (mathbb{R}^n), other generalizations (30C65) Quasiconformal mappings in metric spaces (30L10) Geometric embeddings of metric spaces (30L05)
Related Items (5)
Quasimöbius invariance of Loewner spaces ⋮ Sphericalization and flattening in quasi-metric measure spaces ⋮ Relatively quasimöbius mappings in Banach spaces ⋮ Sphericalizations and applications in Gromov hyperbolic spaces ⋮ On uniform perfectness in quasimetric spaces
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- The pointwise convergence of \(p\)-adic Möbius maps
- Zig-zag chains and metric equivalences between ultrametric spaces
- Nonarchimedean Cantor set and string
- Quasimöbius maps
- Rigidity for quasi-Möbius group actions
- Some invariant properties of quasi-Möbius maps
- Toward a quasi-Möbius characterization of invertible homogeneous metric spaces
- An analogue of the zeta function and its applications
- Asymptotic upper curvature bounds in coarse geometry
- Dimension zero at all scales
- Möbius maps between ultrametric spaces are local similarities
- Quasimöbius maps, weakly quasimöbius maps and uniform perfectness in quasi-metric spaces
- Sobolev Spaces on Metric Measure Spaces
- Fractal Geometry, Complex Dimensions and Zeta Functions
This page was built for publication: Deformations on symbolic Cantor sets and ultrametric spaces