Irreducible components of the eigencurve of finite degree are finite over the weight space
From MaRDI portal
Publication:2187308
DOI10.1515/crelle-2018-0030zbMath1460.11079arXiv1701.05721OpenAlexW2962852560MaRDI QIDQ2187308
Publication date: 2 June 2020
Published in: Journal für die Reine und Angewandte Mathematik (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1701.05721
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- The eigencurve is proper
- Critical \(p\)-adic \(L\)-functions
- Local monodromy in non-Archimedean analytic geometry
- Relative ampleness in rigid geometry
- Modular curves and rigid-analytic spaces
- Irreducible components of rigid spaces
- \(p\)-adic Banach spaces and families of modular forms
- Classical and overconvergent modular forms of higher level
- A \(p\)-adic Jacquet-Langlands correspondence
- Crystalline Dieudonné module theory via formal and rigid geometry
- The eigencurve over the boundary of weight space
- Riemann's existence problem for a \(p\)-adic field
- The 2-adic eigencurve is proper
- The p-adic analytic space of pseudocharacters of a profinite group and pseudorepresentations over arbitrary rings
- The 3-adic eigencurve at the boundary of weight space
- The 2-adic eigencurve at the boundary of weight space
- Familles p-adiques de formes automorphes pour GLn
- On the infinite fern of Galois representations of unitary type
- Modular Forms