Wavelet characterization of local Muckenhoupt weighted Lebesgue spaces with variable exponent
From MaRDI portal
Publication:2188541
DOI10.1016/j.na.2020.111930zbMath1446.42035arXiv1912.03400OpenAlexW3021635194MaRDI QIDQ2188541
Mitsuo Izuki, Toru Nogayama, Yoshihiro Sawano, Takahiro Noi
Publication date: 11 June 2020
Published in: Nonlinear Analysis. Theory, Methods \& Applications. Series A: Theory and Methods (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1912.03400
Nontrigonometric harmonic analysis involving wavelets and other special systems (42C40) Function spaces arising in harmonic analysis (42B35)
Related Items (2)
Weighted estimates for square functions associated with operators ⋮ Wavelet characterization of local Muckenhoupt weighted Sobolev spaces with variable exponents
Cites Work
- Weighted norm inequalities for the maximal operator on variable Lebesgue spaces
- Variable Lebesgue spaces. Foundations and harmonic analysis
- Weights, extrapolation and the theory of Rubio de Francia.
- Lebesgue and Sobolev spaces with variable exponents
- Theory of Besov spaces
- Optimal domain and integral extension of operators, acting in function spaces
- Local Muckenhoupt class for variable exponents
- \(H^p\) spaces of several variables
- The maximal operator on weighted variable Lebesgue spaces
- The A_2 theorem: Remarks and complements
- Wavelet characterization and modular inequalities for weighted Lebesgue spaces with variable exponent
- Orthonormal bases of compactly supported wavelets
- Ondelettes et poids de Muckenhoupt
- Wavelet bases in rearrangement invariant function spaces
- Maximal function on generalized Lebesgue spaces L^p(⋅)
- A Simple Proof of the A2 Conjecture
- The Cauchy Singular Integral Operator on Weighted Variable Lebesgue Spaces
- Hardy spaces for ball quasi-Banach function spaces
- Maximal operator on Orlicz spaces of two variable exponents over unbounded quasi-metric measure spaces
- Annihilator, Completeness and Convergence of Wavelet System
- Wavelet characterization of weighted spaces
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Wavelet characterization of local Muckenhoupt weighted Lebesgue spaces with variable exponent