Further consequences of the colorful Helly hypothesis
DOI10.1007/s00454-019-00085-yzbMath1472.52011arXiv1803.06229OpenAlexW3004970203WikidataQ127926470 ScholiaQ127926470MaRDI QIDQ2189733
Leonardo Martínez-Sandoval, Edgardo Roldán-Pensado, Natan Rubin
Publication date: 16 June 2020
Published in: Discrete \& Computational Geometry (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1803.06229
convex setsgeometric transversalsweak epsilon-netsline transversalstransversal numberscolorful Helly-type theorems
Combinatorial properties of polytopes and polyhedra (number of faces, shortest paths, etc.) (52B05) Transversal (matching) theory (05D15) Helly-type theorems and geometric transversal theory (52A35) Convex sets in (n) dimensions (including convex hypersurfaces) (52A20) Combinatorial complexity of geometric structures (52C45)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Lower bounds for weak epsilon-nets and stair-convexity
- Über ein Problem aus der kombinatorischen Geometrie
- Über eine Variante zum Hellyschen Satz
- Points surrounding the origin
- A generalization of Caratheodory's theorem
- Piercing convex sets and the Hadwiger-Debrunner \((p,q)\)-problem
- Improved bounds on weak \(\varepsilon\)-nets for convex sets
- Transversal numbers for hypergraphs arising in geometry
- Bounding the piercing number
- Very colorful theorems
- Helly’s theorem: New variations and applications
- Tensors, colours, octahedra
- A Problem of Geometry in R n
- Point Selections and Weak ε-Nets for Convex Hulls
This page was built for publication: Further consequences of the colorful Helly hypothesis