Standard bases over Euclidean domains
From MaRDI portal
Publication:2200296
DOI10.1016/j.jsc.2019.10.007zbMath1444.13035arXiv1811.05736OpenAlexW2980529098WikidataQ114154467 ScholiaQ114154467MaRDI QIDQ2200296
Christian Eder, Gerhard Pfister, Adrian Popescu
Publication date: 19 September 2020
Published in: Journal of Symbolic Computation (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1811.05736
Symbolic computation and algebraic computation (68W30) Gröbner bases; other bases for ideals and modules (e.g., Janet and border bases) (13P10)
Related Items (1)
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Effective computation of strong Gröbner bases over Euclidean domains
- Computing a Gröbner basis of a polynomial ideal over a Euclidean domain
- On the D-bases of polynomial ideals over principal ideal domains
- On an installation of Buchberger's algorithm
- A new efficient algorithm for computing Gröbner bases \((F_4)\)
- Modular algorithms for computing Gröbner bases.
- A general framework for Noetherian well ordered polynomial reductions
- Resolution of singularities of an algebraic variety over a field of characteristic zero. II
- Bruno Buchberger's PhD thesis 1965: An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal. Translation from the German
- Über die Deformation isolierter Singularitäten analytischer Mengen
- Resolution of singularities of an algebraic variety over a field of characteristic zero. I
- Solving Polynomial Equation Systems
- A Singular Introduction to Commutative Algebra
- On Signature-Based Gröbner Bases Over Euclidean Rings
This page was built for publication: Standard bases over Euclidean domains