Positive Lyapunov exponent for some Schrödinger cocycles over strongly expanding circle endomorphisms
DOI10.1007/s00220-020-03810-4zbMath1451.37077arXiv1912.06063OpenAlexW3043759418MaRDI QIDQ2200879
Publication date: 23 September 2020
Published in: Communications in Mathematical Physics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1912.06063
Dynamical systems involving maps of the circle (37E10) Random dynamical systems aspects of multiplicative ergodic theory, Lyapunov exponents (37H15) Smooth ergodic theory, invariant measures for smooth dynamical systems (37C40) Dynamical systems involving homeomorphisms and diffeomorphisms of planes and surfaces (37E30)
Related Items (6)
Cites Work
- Unnamed Item
- Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d'un théorème d'Arnold et de Moser sur le tore de dimension 2
- Explicit examples of arbitrarily large analytic ergodic potentials with zero Lyapunov exponent
- Positive Lyapunov exponents for Schrödinger operators with quasi- periodic potentials
- Multidimensional nonhyperbolic attractors
- Positive Lyapunov exponents for a class of deterministic potentials
- Multiscale analysis for ergodic Schrödinger operators and positivity of Lyapunov exponents
- Bounds on the Lyapunov exponent via crude estimates on the density of states
- Almost everywhere positivity of the Lyapunov exponent for the doubling map
- Some open sets of nonuniformly hyperbolic cocycles
- Schrödinger operators with dynamically defined potentials
- A note on circle maps driven by strongly expanding endomorphisms on
- Anderson localization for Schrödinger operators on \(\mathbb{Z}\) with strongly mixing potentials.
This page was built for publication: Positive Lyapunov exponent for some Schrödinger cocycles over strongly expanding circle endomorphisms