Testing that a local optimum of the likelihood is globally optimum using reparameterized embeddings. Applications to wavefront sensing
From MaRDI portal
Publication:2203364
DOI10.1007/s10851-020-00979-0zbMath1483.62057arXiv1906.00101OpenAlexW3043539987MaRDI QIDQ2203364
Joel W. LeBlanc, Brian J. Thelen, Alfred O. III Hero
Publication date: 6 October 2020
Published in: Journal of Mathematical Imaging and Vision (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1906.00101
Parametric hypothesis testing (62F03) Point estimation (62F10) Applications of mathematical programming (90C90) Machine vision and scene understanding (68T45)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- The epic story of maximum likelihood
- Nonlinear oscillator with discontinuity by parameter-expansion method
- Stability of the minimizers of least squares with a non-convex regularization. II: Global behavior
- Stability of the minimizers of least squares with a non-convex regularization. I: Local behavior
- Model distortions in Bayesian MAP reconstruction
- The Lagrangian Multiplier Test
- On Tests for Global Maximum of the Log-Likelihood Function
- Parameter expansion to accelerate EM: the PX-EM algorithm
- Numerical Optimization
- Estimées localement fortement homogènes
- Inversion of large-support ill-posed linear operators using a piecewise Gaussian MRF
- Simulated annealing for maximum a posteriori parameter estimation of hidden Markov models
- A Test for Global Maximum
- Blind identification/equalization using deterministic maximum likelihood and a partial prior on the input
- Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode
- Phase retrieval of radiated fields
- A fast marching level set method for monotonically advancing fronts.
- Note on the Consistency of the Maximum Likelihood Estimate
- Tests of Statistical Hypotheses Concerning Several Parameters When the Number of Observations is Large
- Maximum Likelihood Estimation of Misspecified Models