Spectral multipliers without semigroup framework and application to random walks
DOI10.1016/j.matpur.2020.09.009OpenAlexW3087766803MaRDI QIDQ2204937
Adam S. Sikora, El Maati Ouhabaz, Li Xin Yan, Peng Chen
Publication date: 16 October 2020
Published in: Journal de Mathématiques Pures et Appliquées. Neuvième Série (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1902.11002
Sums of independent random variables; random walks (60G50) Singular and oscillatory integrals (Calderón-Zygmund, etc.) (42B20) Multipliers for harmonic analysis in several variables (42B15) Markov chains (discrete-time Markov processes on discrete state spaces) (60J10) Linear symmetric and selfadjoint operators (unbounded) (47B25) General theory of partial differential operators (47F05)
Related Items (6)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Restriction estimates, sharp spectral multipliers and endpoint estimates for Bochner-Riesz means
- Sharp \(L^p\) estimates for Schrödinger groups
- Restriction and spectral multiplier theorems on asymptotically conic manifolds
- Sharp spectral multipliers for operators satisfying generalized Gaussian estimates
- A new approach to pointwise heat kernel upper bounds on doubling metric measure spaces
- Gaussian estimates for Markov chains and random walks on groups
- Estimates for translation invariant operators in \(L^p\) spaces
- Weighted norm estimates and maximal regularity.
- Plancherel-type estimates and sharp spectral multipliers
- Calderón-Zygmund theory for non-integral operators and the \(H^\infty\) functional calculus
- Spectral multipliers for Markov chains
- \(L^ p\)-mapping properties of functions of Schrödinger operators and their applications to scattering theory
- Sharp \(L^p\) estimates for Schrödinger groups on spaces of homogeneous type
- Extensions of the Stein-Tomas theorem
- Joint functional calculi and a sharp multiplier theorem for the Kohn Laplacian on spheres
- Restriction estimates via the derivatives of the heat semigroup and connection with dispersive estimates
- The spectral function of an elliptic operator
- Analyse harmonique non-commutative sur certains espaces homogènes. Etude de certaines intégrales singulières. (Non-commutative harmonic analysis on certain homogeneous spaces. Study of certain singular integrals.)
- Finite propagation speed for first order systems and Huygens’ principle for hyperbolic equations
- L p Bounds for Spectral Multipliers on Nilpotent Groups
- Spectral Multipliers on Lie Groups of Polynomial Growth
- A multiplier theorem for Schrödinger operators
- Hardy Spaces on Homogeneous Groups. (MN-28), Volume 28
- Spectral multiplier theorems of Hormander type on Hardy and Lebesgue spaces
- A spectral multiplier theorem for a sublaplacian on SU\((2)\)
This page was built for publication: Spectral multipliers without semigroup framework and application to random walks