Asymptotic inversion of the binomial and negative binomial cumulative distribution functions
DOI10.1553/ETNA_VOL52S270zbMath1450.33007arXiv2001.03953OpenAlexW3028722453MaRDI QIDQ2208921
Javier Segura, Amparo Gil, Nico M. Temme
Publication date: 28 October 2020
Published in: ETNA. Electronic Transactions on Numerical Analysis (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2001.03953
asymptotic representationbinomial cumulative distribution functionasymptotic inversion methodsnegative binomial cumulative distribution function
Asymptotic approximations, asymptotic expansions (steepest descent, etc.) (41A60) Incomplete beta and gamma functions (error functions, probability integral, Fresnel integrals) (33B20)
Related Items (1)
Uses Software
Cites Work
- \texttt{GammaCHI}: a package for the inversion and computation of the gamma and chi-square cumulative distribution functions (central and noncentral)
- Efficient algorithms for the inversion of the cumulative central beta distribution
- Asymptotic inversion of the incomplete beta function
- Sample size calculations for the differential expression analysis of RNA-seq data using a negative binomial regression model
- The Uniform Asymptotic Expansion of a Class of Integrals Related to Cumulative Distribution Functions
This page was built for publication: Asymptotic inversion of the binomial and negative binomial cumulative distribution functions