Fractional Laplacian, homogeneous Sobolev spaces and their realizations
From MaRDI portal
Publication:2210726
DOI10.1007/s10231-020-00966-7zbMath1473.46043arXiv1910.05980OpenAlexW3009578234MaRDI QIDQ2210726
Marco M. Peloso, Alessandro Monguzzi, Maura Salvatori
Publication date: 8 November 2020
Published in: Annali di Matematica Pura ed Applicata. Serie Quarta (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1910.05980
Function spaces arising in harmonic analysis (42B35) Sobolev spaces and other spaces of ``smooth functions, embedding theorems, trace theorems (46E35)
Related Items (8)
Fractional Paley-Wiener and Bernstein spaces ⋮ Homogeneous algebras via heat kernel estimates ⋮ Characterisation of homogeneous fractional Sobolev spaces ⋮ Rectification of a deep water model for surface gravity waves ⋮ Sobolev algebras on Lie groups and noncommutative geometry ⋮ Sharp approximation theorems and Fourier inequalities in the Dunkl setting ⋮ Sampling in spaces of entire functions of exponential type in \(\mathbb{C}^{n + 1} \) ⋮ Periodic Hölder waves in a class of negative-order dispersive equations
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Hitchhiker's guide to the fractional Sobolev spaces
- Tempered homogeneous function spaces
- Ten equivalent definitions of the fractional Laplace operator
- Lipschitz spaces, smoothness of functions, and approximation theory
- Réalisations des espaces de Besov homogènes. (Realization of homogeneous Besov spaces)
- A note on Riesz potentials
- Sobolev spaces on Lie groups: embedding theorems and algebra properties
- Sobolev algebras on nonunimodular Lie groups
- A density result for homogeneous Sobolev spaces on planar domains
- Besov and Triebel-Lizorkin spaces on Lie groups
- A note on homogeneous Sobolev spaces of fractional order
- A complete real-variable theory of Hardy spaces on spaces of homogeneous type
- Realizations of homogeneous Sobolev spaces
- Tempered homogeneous function spaces, II
- Fractional integration on Hardy spaces
- Realizations of homogeneous Besov and Lizorkin‐Triebel spaces
- Classical Fourier Analysis
- Modern Fourier Analysis
- An Extension Problem Related to the Fractional Laplacian
- Fractional powers of operators
This page was built for publication: Fractional Laplacian, homogeneous Sobolev spaces and their realizations