A recurrence analysis of chaotic and non-chaotic solutions within a generalized nine-dimensional Lorenz model
DOI10.1016/j.chaos.2019.05.003zbMath1448.34091OpenAlexW2946271620WikidataQ127848882 ScholiaQ127848882MaRDI QIDQ2213028
Publication date: 27 November 2020
Published in: Chaos, Solitons and Fractals (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.chaos.2019.05.003
Periodic solutions to ordinary differential equations (34C25) Qualitative investigation and simulation of ordinary differential equation models (34C60) Complex behavior and chaotic systems of ordinary differential equations (34C28) Notions of recurrence and recurrent behavior in topological dynamical systems (37B20)
Related Items (4)
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Determining Lyapunov exponents from a time series
- A generalized Lorenz system
- The synchronization of chaotic systems
- Dynamics of coupled Lorenz systems and its geophysical implications
- Generalized Lorenz models and their routes to chaos. I: Energy-conserving vertical mode truncations
- Generalized Lorenz models and their routes to chaos. III: Energy-conserving horizontal and vertical mode truncations
- Generalized Lorenz models and their routes to chaos. II: Energy-conserving horizontal mode truncations
- Order and disorder in two- and three-dimensional Bénard convection
- RECURRENCE QUANTIFICATION ANALYSIS: INTRODUCTION AND HISTORICAL CONTEXT
- Large-scale flow in turbulent convection: a mathematical model
- Energy-conserving truncations for convection with shear flow
- Quasi-Periodic Orbits in the Five-Dimensional Nondissipative Lorenz Model: The Role of the Extended Nonlinear Feedback Loop
- Periodicity and Chaos of High-Order Lorenz Systems
- Deterministic Nonperiodic Flow
- Aggregated Negative Feedback in a Generalized Lorenz Model
This page was built for publication: A recurrence analysis of chaotic and non-chaotic solutions within a generalized nine-dimensional Lorenz model