On the \(p(X)\)-Kirchhoff-type equation involving the \(p(X)\)-biharmonic operator via the genus theory
From MaRDI portal
Publication:2214025
DOI10.1007/s11253-020-01836-4zbMath1454.35203OpenAlexW3108352159MaRDI QIDQ2214025
Said Taarabti, K. Ben Haddouch, Zakaria El Allali
Publication date: 4 December 2020
Published in: Ukrainian Mathematical Journal (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s11253-020-01836-4
Boundary value problems for second-order elliptic equations (35J25) Existence problems for PDEs: global existence, local existence, non-existence (35A01) Quasilinear elliptic equations with (p)-Laplacian (35J92)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Existence and multiplicity of solutions for Kirchhoff type equations
- Multiplicity of nontrivial solutions for Kirchhoff type problems
- Interpolation inequalities for derivatives in variable exponent Lebesgue-Sobolev spaces
- A Knobloch-type result for \(p(t\))-Laplacian systems.
- Solutions for Neumann boundary value problems involving \(p(x)\)-Laplace operators
- Existence and multiplicity of the solutions of the p (x )-Kirchhoff type equation via genus theory
- On an elliptic equation of p-Kirchhoff type via variational methods
- Gradient estimates for thep(x)-Laplacean system
- Variable Exponent, Linear Growth Functionals in Image Restoration
- Multiplicity results for a class of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>p</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>x</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>-Kirchhoff type equations with combined nonlinearities
- Existence and multiplicity of solutions for a Neumann problem involving the \(p(x)\)-Laplace operator
- Sobolev embedding theorems for spaces \(W^{k,p(x)}(\Omega)\)
- On the spaces \(L^{p(x)}(\Omega)\) and \(W^{m,p(x)}(\Omega)\)