Künneth formulas for motives and additivity of traces
From MaRDI portal
Publication:2214086
DOI10.1016/j.aim.2020.107446zbMath1490.14034arXiv1812.06441OpenAlexW2904234802MaRDI QIDQ2214086
Publication date: 4 December 2020
Published in: Advances in Mathematics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1812.06441
characteristic classderivatorsmotivic homotopyKünneth formulasmotivic homotopy categoriessix functorsVerdier pairings
Related Items (6)
Fundamental classes in motivic homotopy theory ⋮ On some finiteness results in real étale cohomology ⋮ Trace maps in motivic homotopy and local terms ⋮ Higher symmetries in abstract stable homotopy theories ⋮ The motivic Satake equivalence ⋮ Cohomological methods in intersection theory
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Integral mixed motives in equal characteristic
- Borel-Moore motivic homology and weight structure on mixed motives
- A quadratic refinement of the Grothendieck-Lefschetz-Verdier trace formula
- The characteristic cycle and the singular support of a constructible sheaf
- The characteristic class and ramification of an \(\ell\)-adic étale sheaf
- Algebraic cycles and higher K-theory
- Cohomologie étale. Seminaire de géométrie algébrique du Bois-Marie SGA 4 1/2 par P. Deligne, avec la collaboration de J. F. Boutot, A. Grothendieck, L. Illusie et J. L. Verdier
- Seminaire de géométrie algébrique du Bois-Marie 1965-66 SGA 5 dirige par A. Grothendieck avec la collaboration de I. Bucur, C. Houzel, L. Illusie, J.-P. Jouanolou et J. -P. Serre. Cohomologie \(\ell\)-adique et fonctions L
- Geometric Eisenstein series
- Spanier-Whitehead duality in algebraic geometry
- Bivariant theories in motivic stable homotopy
- Ramification theory for varieties over a perfect field
- Dimensional homotopy t-structures in motivic homotopy theory
- Motivic cohomology, localized Chern classes, and local terms
- Étale motives
- On Chow weight structures for $cdh$-motives with integral coefficients
- Weight structures vs.t-structures; weight filtrations, spectral sequences, and complexes (for motives and in general)
- Cycles, Transfers, and Motivic Homology Theories. (AM-143)
- Perfection in motivic homotopy theory
- MOTIVIC EULER CHARACTERISTICS AND WITT-VALUED CHARACTERISTIC CLASSES
- La réalisation étale et les opérations de Grothendieck
- The additivity of traces in monoidal derivators
- Higher Topos Theory (AM-170)
- \(\mathbb{A}^1\)-homotopy theory of schemes
- The additivity of traces in triangulated categories
This page was built for publication: Künneth formulas for motives and additivity of traces