Extremal functions for sharp Moser-Trudinger type inequalities in the whole space \(\mathbb{R}^N\)
From MaRDI portal
Publication:2215835
DOI10.1016/j.jfa.2020.108833zbMath1467.46038OpenAlexW3095500473MaRDI QIDQ2215835
Publication date: 14 December 2020
Published in: Journal of Functional Analysis (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jfa.2020.108833
maximizersnormalized concentrating limitnormalized vanishing limitsharp Moser-Trudinger type inequality
Sobolev spaces and other spaces of ``smooth functions, embedding theorems, trace theorems (46E35) Inequalities involving derivatives and differential and integral operators (26D10)
Related Items (2)
A sharp Moser-Trudinger type inequality involving \(L^p\) norm in \(\mathbb{R}^n\) with degenerate potential ⋮ The weighted Moser-Trudinger inequalities of Adimurthi-Druet type in \(\mathbb{R}^N\)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A Hardy-Moser-Trudinger inequality
- Trudinger-Moser inequality with remainder terms
- Blow-up analysis concerning singular Trudinger-Moser inequalities in dimension two
- Existence and nonexistence of maximizers for variational problems associated with Trudinger--Moser type inequalities in \({\mathbb{R}^N}\)
- Adams type inequalities and related elliptic partial differential equations in dimension four
- Existence of positive solutions to quasi-linear elliptic equations with exponential growth in the whole Euclidean space
- Extremal functions for singular Trudinger-Moser inequalities in the entire Euclidean space
- Trudinger-Moser inequalities on complete noncompact Riemannian manifolds
- A sharp form of Moser-Trudinger inequality in high dimension
- The concentration-compactness principle in the calculus of variations. The limit case. II
- Adams' inequalities for bi-Laplacian and extremal functions in dimension four
- Functional analysis, Sobolev spaces and partial differential equations
- Critical points of embeddings of \(H_ 0^{1,n}\) into Orlicz spaces
- Extremal functions for the Trudinger-Moser inequality in 2 dimensions
- Equivalence of critical and subcritical sharp Trudinger-Moser-Adams inequalities
- Existence and non-existence of maximizers for the Moser-Trudinger type inequalities under inhomogeneous constraints
- Sharp Moser-Trudinger inequality on the Heisenberg group at the critical case and applications
- A sharp Trudinger-Moser type inequality for unbounded domains in \(\mathbb R^2\)
- \(N\)-Laplacian equations in \(\mathbb{R}^N\) with critical growth
- Existence and nonexistence of extremal functions for sharp Trudinger-Moser inequalities
- A sharp inequality of Trudinger-Moser type and extremal functions in \(H^{1, n}(\mathbb{R}^n)\)
- Extremal functions for Trudinger-Moser inequalities of Adimurthi-Druet type in dimension two
- A sharp Trudinger-Moser type inequality involving \(L^n\) norm in the entire space $\mathbb{R}^n$
- An improvement for the Trudinger-Moser inequality and applications
- Remarks on the extremal functions for the Moser-Trudinger inequality
- Critical points for a functional involving critical growth of Trudinger-Moser type
- Isolated singularities of solutions of quasi-linear equations
- Extremal functions for the Moser-Trudinger inequalities on compact Riemannian manifolds
- A new approach to sharp Moser-Trudinger and Adams type inequalities: a rearrangement-free argument
- A singular Moser-Trudinger embedding and its applications
- Blow-up Analysis in Dimension 2 and a Sharp Form of Trudinger–Moser Inequality
- Trudinger–Moser inequality on the whole plane and extremal functions
- A sharp Trudinger-Moser type inequality in $\mathbb {R}^2$
- A sharp form of the Moser-Trudinger inequality on a compact Riemannian surface
- Nontrivial Solution of Semilinear Elliptic Equations with Critical Exponent in R
- Extremal functions for Moser’s inequality
- GROUP INVARIANCE AND POHOZAEV IDENTITY IN MOSER-TYPE INEQUALITIES
- Trudinger type inequalities in $\mathbf {R}^N$ and their best exponents
- EXTREMAL FUNCTIONS FOR MOSER–TRUDINGER INEQUALITIES ON 2-DIMENSIONAL COMPACT RIEMANNIAN MANIFOLDS WITH BOUNDARY
- Extremal functions for the Moser–Trudinger inequality of Adimurthi–Druet type in W1,N(ℝN)
- A sharp Trudinger-Moser type inequality for unbounded domains in $\mathbb{R}^n$
This page was built for publication: Extremal functions for sharp Moser-Trudinger type inequalities in the whole space \(\mathbb{R}^N\)