A landing theorem for entire functions with bounded post-singular sets
DOI10.1007/s00039-020-00551-3zbMath1461.37047arXiv1711.10780OpenAlexW3099060364MaRDI QIDQ2216469
Lasse Rempe-Gillen, Anna Miriam Benini
Publication date: 16 December 2020
Published in: Geometric and Functional Analysis. GAFA (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1711.10780
combinatoricsaccessibilitytranscendental entire functionexternal raytranscendental dynamicsdreadlockhair
Functional equations in the complex plane, iteration and composition of analytic functions of one complex variable (30D05) Dynamics of complex polynomials, rational maps, entire and meromorphic functions; Fatou and Julia sets (37F10) Combinatorics and topology in relation with holomorphic dynamical systems (37F20) Critical orbits for holomorphic dynamical systems (37F12)
Related Items (11)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A note on repelling periodic points for meromorphic functions with a bounded set of singular values
- Absence of wandering domains for some real entire functions with bounded singular sets
- Repelling periodic points and landing of rays for post-singularly bounded exponential maps
- Escaping endpoints explode
- Parapuzzle of the Multibrot set and typical dynamics of unimodal maps
- Rigidity of escaping dynamics for transcendental entire functions
- Dynamic rays of bounded-type entire functions
- Dynamical properties of some classes of entire functions
- The boundary of bounded polynomial Fatou components
- Quotients of hyperbolic metrics
- External rays to periodic points
- A bound on the number of rationally invisible repelling orbits
- Singularities of inner functions associated with hyperbolic maps
- On local connectivity for the Julia set of rational maps: Newton's famous example
- Hyperbolic entire functions and the Eremenko-Lyubich class: Class \(\mathcal {B}\) or not class \(\mathcal {B}\)?
- Snake-like continua
- Wandering orbit portraits
- Triviality of fibers for Misiurewicz parameters in the exponential family
- A landing theorem for periodic dynamic rays for transcendental entire maps with bounded post-singular set
- Expansivity properties and rigidity for non-recurrent exponential maps
- Wandering Domains in the Iteration of Entire Functions
- Absence of line fields and Mañé’s theorem for nonrecurrent transcendental functions
- Julia sets and bifurcation diagrams for exponential maps
- Siegel disks and periodic rays of entire functions
- A landing theorem for dynamic rays of geometrically finite entire functions
- Are Devaney hairs fast escaping?
- HAIRS FOR THE COMPLEX EXPONENTIAL FAMILY
- On a question of Eremenko concerning escaping components of entire functions
- Dynamics of exp (z)
- Dynamics of entire functions near the essential singularity
- Periodic points of polynomials
- ESCAPING POINTS OF EXPONENTIAL MAPS
- An inequality for laminations, Julia sets and ‘growing trees’
- Indecomposable continua in exponential dynamics
- A separation theorem for entire transcendental maps
- Fixed points of polynomial maps. Part II. Fixed point portraits
- Coding trees and boundaries of attracting basins for some entire maps
- A landing theorem for periodic rays of exponential maps
- INDECOMPOSABLE CONTINUA AND MISIUREWICZ POINTS IN EXPONENTIAL DYNAMICS
- Dynamics in One Complex Variable. (AM-160)
- Topological dynamics of exponential maps on their escaping sets
This page was built for publication: A landing theorem for entire functions with bounded post-singular sets