Modules of the 0-Hecke algebra arising from standard permuted composition tableaux
DOI10.1016/j.jcta.2020.105389zbMath1498.05279arXiv2003.11225OpenAlexW3116829111WikidataQ112881843 ScholiaQ112881843MaRDI QIDQ2221913
Young-Hun Kim, Sun-Young Nam, Seung-Il Choi, Young-Tak Oh
Publication date: 3 February 2021
Published in: Journal of Combinatorial Theory. Series A (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2003.11225
projective cover0-Hecke algebraquasisymmetric characteristicpermuted composition tableauquasisymmetric Schur function
Symmetric functions and generalizations (05E05) Hecke algebras and their representations (20C08) Combinatorial aspects of groups and algebras (05E16)
Related Items (5)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Properties of the nonsymmetric Robinson-Schensted-Knuth algorithm
- A tableau approach to the representation theory of 0-Hecke algebras
- Representation type of 0-Hecke algebras.
- 0-Hecke algebras of finite Coxeter groups.
- Quasisymmetric Schur functions
- Skew quasisymmetric Schur functions and noncommutative Schur functions
- Modules of the 0-Hecke algebra and quasisymmetric Schur functions
- Noncommutative symmetric functions. IV: Quantum linear groups and Hecke algebras at \(q=0\)
- Permuted composition tableaux, 0-Hecke algebra and labeled binary trees
- Yang-Baxter bases of 0-Hecke algebras and representation theory of 0-Ariki-Koike-Shoji algebras.
- Refinements of the Littlewood-Richardson rule
- NONCOMMUTATIVE SYMMETRIC FUNCTIONS VI: FREE QUASI-SYMMETRIC FUNCTIONS AND RELATED ALGEBRAS
- An Introduction to Quasisymmetric Schur Functions
- Indecomposable 0-Hecke modules for extended Schur functions
- Indecomposable modules for the dual immaculate basis of quasi-symmetric functions
- The decomposition of 0-Hecke modules associated to quasisymmetric Schur functions
This page was built for publication: Modules of the 0-Hecke algebra arising from standard permuted composition tableaux