Application of optimal quadrature formulas for reconstruction of CT images
DOI10.1016/j.cam.2020.113313zbMath1460.65025OpenAlexW3112158372WikidataQ113878739 ScholiaQ113878739MaRDI QIDQ2223883
Soomin Jeon, Kholmat Mahkambaevich Shadimetov, Abdullo Rakhmonovich Hayotov
Publication date: 3 February 2021
Published in: Journal of Computational and Applied Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.cam.2020.113313
Fourier transformSobolev spaceRadon transformoptimal quadrature formulaerror functionalCT image reconstructionfiltered back-projection method
Interpolation in approximation theory (41A05) Spline approximation (41A15) Approximate quadratures (41A55) Numerical quadrature and cubature formulas (65D32) Numerical methods for trigonometric approximation and interpolation (65T40)
Related Items (5)
Cites Work
- Complexity of oscillatory integration for univariate Sobolev spaces
- Construction of optimal quadrature formulas for Fourier coefficients in Sobolev space \(L_{2}^{(m)}(0,1)\)
- Numerical calculation of integrals involving oscillatory and singular kernels and some applications of quadratures
- Efficient computation of highly oscillatory integrals with Hankel kernel
- Optimal quadrature formulas for the Sobolev space \(H^1\)
- On an optimal quadrature formula for approximation of Fourier integrals in the space \(L_2^{( 1 )}\)
- Numerical approximation of vector-valued highly oscillatory integrals
- Numerical Integration of Highly Oscillating Functions
- Computing Highly Oscillatory Integrals
- OPTIMAL QUADRATURE FORMULAS FOR FOURIER COEFFICIENTS IN <i>W</i><sub>2</sub><sup>(<i>m</i>,<i>m</i>-1)</sup> 2 SPACE
- Efficient quadrature of highly oscillatory integrals using derivatives
- The Mathematics of Medical Imaging
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Application of optimal quadrature formulas for reconstruction of CT images