Magnetic deformation of super-Maxwell theory in supergravity
From MaRDI portal
Publication:2225737
DOI10.1007/JHEP08(2020)079zbMath1454.83155arXiv2005.11374MaRDI QIDQ2225737
Gabriele Tartaglino-Mazzucchelli, Hongliang Jiang, Jean-Pierre Derendinger, Ignatios Antoniadis
Publication date: 10 February 2021
Published in: Journal of High Energy Physics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2005.11374
Supergravity (83E50) Supersymmetric field theories in quantum mechanics (81T60) Electromagnetic interaction; quantum electrodynamics (81V10) Symmetry breaking in quantum theory (81R40) Effective quantum field theories (81T12)
Related Items
Weak Gravity Conjecture in de Sitter Space‐Time, Hyper-dilaton Weyl multiplet of 4D, \(\mathcal{N} = 2\) conformal supergravity
Cites Work
- Unnamed Item
- Unnamed Item
- Nonlinear \(\mathcal{N}=2 \) global supersymmetry
- Note on supersymmetric Dirac-Born-Infeld action with Fayet-Iliopoulos term
- \(\mathcal N =1\) conformal superspace in four dimensions
- Nonlinear \(N=2\) supersymmetry, effective actions and moduli stabilization
- Spontaneous breaking of \(N=2\) global supersymmetry.
- Abelian tensor hierarchy and Chern-Simons actions in 4D \( \mathcal{N} = 1\) conformal supergravity
- Nilpotent chiral superfield in \( \mathcal{N}=2 \) supergravity and partial rigid supersymmetry breaking
- Anomaly-free gauged \(R\)-symmetry in local supersymmetry
- \( \mathcal{N}=2 \) supersymmetry deformations, electromagnetic duality and Dirac-Born-Infeld actions
- The Volkov-Akulov-Starobinsky supergravity
- Properties of nilpotent supergravity
- N=1 Superconformal Tensor Calculus: Multiplets with External Lorentz Indices and Derivative Operations
- Component versus superspace approaches to D = 4, N = 1 conformal supergravity
- Supersymmetric duality rotations
- Supergravity couplings: a geometric formulation