Integral-type fractional equations with a proportional Riemann-Liouville derivative
From MaRDI portal
Publication:2230076
DOI10.1155/2021/9990439zbMath1477.34020OpenAlexW3177134499WikidataQ114069812 ScholiaQ114069812MaRDI QIDQ2230076
Publication date: 17 September 2021
Published in: Journal of Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1155/2021/9990439
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- An efficient numerical algorithm for solving fractional higher-order nonlinear integrodifferential equations
- Boundary value problems for nonlinear fractional integro-differential equations: theoretical and numerical results
- Existence results and the monotone iterative technique for systems of nonlinear fractional differential equations
- Monotone iterative sequences for nonlinear integro-differential equations of second order
- Monotone iterative technique for boundary value problems of a nonlinear fractional differential equation with deviating arguments
- Initial value problems for fractional differential equations involving Riemann-Liouville sequential fractional derivative
- Monotone iterative method for initial value problem involving Riemann-Liouville fractional derivatives
- Monotone iterative technique and existence results for fractional differential equations
- Fractional equations of Volterra type involving a Riemann-Liouville derivative
- Ostrowski type inequalities via new fractional conformable integrals
- On more general forms of proportional fractional operators
- Monotone iterative technique for fractional differential equations with periodic boundary conditions
This page was built for publication: Integral-type fractional equations with a proportional Riemann-Liouville derivative