Cocenters of \(p\)-adic groups. III: Elliptic and rigid cocenters
From MaRDI portal
Publication:2238775
DOI10.1007/S42543-020-00027-1zbMath1487.22018arXiv1703.00378OpenAlexW3093341119MaRDI QIDQ2238775
Publication date: 2 November 2021
Published in: Peking Mathematical Journal (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1703.00378
Hecke algebraLevi subgroup\(p\)-adic groupcocentertrace Paley-Wiener theoremabstract Selberg principle
Hecke algebras and their representations (20C08) Representations of Lie and linear algebraic groups over local fields (22E50)
Related Items (3)
Cocenter of \(p\)-adic groups. II: Induction map ⋮ A geometric interpretation of Newton strata ⋮ Jordan decompositions of cocenters of reductive 𝑝-adic groups
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Cuspidal geometry of p-adic groups
- Representations of groups over close local fields
- Trace Paley-Wiener theorem for reductive p-adic groups
- Orbital integrals on p-adic groups: A proof of the Howe conjecture
- Characters and Jacquet modules
- Unrefined minimal \(K\)-types for \(p\)-adic groups
- Cocenter of \(p\)-adic groups. II: Induction map
- Cyclic homology and the Selberg principle
- Nilpotent orbits over ground fields of good characteristic
- Jacquet functors and unrefined minimal \(K\)-types
- \(l\)-modular representations of a \(p\)-adic reductive group with \(l\neq p\)
- On the \(K_0\) of a \(p\)-adic group
- Cocenters and representations of affine Hecke algebras
- Computation of certain induced characters of P-adic groups
- Une preuve courte du principe de Selberg pour un groupe 𝑝-adique
- Premiers réguliers de l'analyse harmonique mod ℓ d'un groupe réductif p-adique
- Representations of Reductive p -Adic Groups: Localization of Hecke Algebras and Applications
- Trace Paley-Wiener Theorem in the Twisted Case
- COCENTERS OF -ADIC GROUPS, I: NEWTON DECOMPOSITION
- Characters and growth of admissible representations of reductive p-adic groups
- Semisimple Langlands correspondence for \(\operatorname {GL}(n,F)\bmod \ell\neq p\)
This page was built for publication: Cocenters of \(p\)-adic groups. III: Elliptic and rigid cocenters