Understanding partial \(\mathcal{PT}\) symmetry as weighted composition conjugation in reproducing kernel Hilbert space: an application to non-Hermitian Bose-Hubbard type Hamiltonian in Fock space
From MaRDI portal
Publication:2239783
DOI10.1007/s10773-021-04946-2OpenAlexW3197482920WikidataQ114226199 ScholiaQ114226199MaRDI QIDQ2239783
Publication date: 5 November 2021
Published in: International Journal of Theoretical Physics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2012.14101
Fock spacereproducing kernel Hilbert spaceBose-Hubbard modelnon-Hermitian operatorpartial \(\mathcal{PT}\)-symmetry
Special classes of linear operators (47Bxx) General theory of linear operators (47Axx) General mathematical topics and methods in quantum theory (81Qxx)
Cites Work
- Unnamed Item
- Non-Hermitian Hamiltonians and similarity transformations
- Complex symmetry of weighted composition operators on the Fock space
- Non-Hermitian \(\mathcal{PT}\)-symmetric Dirac-Pauli Hamiltonians with real energy eigenvalues in the magnetic field
- Complex symmetric differential operators on Fock space
- Time evolution of two-states non-Hermitian systems
- An Introduction to the Theory of Reproducing Kernel Hilbert Spaces
- Complex Extension of Quantum Mechanics
- Consistency of PT-symmetric quantum mechanics
- Non-Hermitian Quantum Mechanics
- Visualization of Branch Points in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="script">P</mml:mi><mml:mi mathvariant="script">T</mml:mi></mml:math>-Symmetric Waveguides
- Complex symmetric operators and applications II
- A non-Hermitian \mathcal{P}\mathcal{T} symmetric Bose–Hubbard model: eigenvalue rings from unfolding higher-order exceptional points
- Real Spectra in Non-Hermitian Hamiltonians Having<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="bold-script">P</mml:mi><mml:mi mathvariant="bold-script">T</mml:mi></mml:math>Symmetry
- 𝓟𝓣-symmetric quantum mechanics
- Pseudo-Hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian
- Complex symmetric weighted composition operators on the Fock space in several variables
- Biorthogonal quantum mechanics
- Orthogonal Polynomials of Several Variables
- Complex symmetric operators and applications