The finite-time expected deviation exponent for continuous dynamical systems
From MaRDI portal
Publication:2245887
DOI10.1134/S0965542521100122zbMath1483.37105OpenAlexW3200300949MaRDI QIDQ2245887
Publication date: 15 November 2021
Published in: Computational Mathematics and Mathematical Physics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1134/s0965542521100122
Generation, random and stochastic difference and differential equations (37H10) Orbit growth in dynamical systems (37C35) Computational methods for ergodic theory (approximation of invariant measures, computation of Lyapunov exponents, entropy, etc.) (37M25)
Cites Work
- An Eulerian approach for computing the finite time Lyapunov exponent
- Nonlinear finite-time Lyapunov exponent and predictability
- A variational theory of hyperbolic Lagrangian coherent structures
- Fast geodesics computation with the phase flow method
- Lagrangian coherent structures and mixing in two-dimensional turbulence
- Dynamic rotation and stretch tensors from a dynamic polar decomposition
- Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows
- Do Finite-Size Lyapunov Exponents detect coherent structures?
- The backward phase flow method for the Eulerian finite time Lyapunov exponent computations
- Finite size Lyapunov exponent: review on applications
- A Comparison of Finite-Time and Finite-Size Lyapunov Exponents
- Lagrangian coherent structures in n-dimensional systems
- Lagrangian structures and the rate of strain in a partition of two-dimensional turbulence
- Predictability in the large: an extension of the concept of Lyapunov exponent
- Lagrangian coherent structures and internal wave attractors
- Lagrangian coherent structures and the smallest finite-time Lyapunov exponent
- Eulerian Methods for Visualizing Continuous Dynamical Systems using Lyapunov Exponents
- Distinguished material surfaces and coherent structures in three-dimensional fluid flows
This page was built for publication: The finite-time expected deviation exponent for continuous dynamical systems