On Ramanujan's formula for \(\zeta(1/2)\) and \(\zeta(2m+1)\)
From MaRDI portal
Publication:2247714
DOI10.1016/j.jmaa.2021.125738zbMath1474.11145arXiv2106.04797OpenAlexW3205108112MaRDI QIDQ2247714
Anushree Gupta, Bibekananda Maji
Publication date: 17 November 2021
Published in: Journal of Mathematical Analysis and Applications (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2106.04797
Related Items (4)
Voronoï bound for a generalized divisor function ⋮ Explicit transformations for generalized Lambert series associated with the divisor function \(\sigma_a^{(N)}(n)\) and their applications ⋮ A new Ramanujan-type identity for \(L(2k+1, \chi_1)\) ⋮ Identities associated to a generalized divisor function and modified Bessel function
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- New pathways and connections in number theory and analysis motivated by two incorrect claims of Ramanujan
- On a secant Dirichlet series and Eichler integrals of Eisenstein series
- Modular transformations and generalizations of several formulae of Ramanujan
- Series acceleration formulas for Dirichlet series with periodic coefficients
- On squares of odd zeta values and analogues of Eisenstein series
- Contributions to the Theory of Zeta-Functions
- Transcendental values of certain Eichler integrals
- La fonction zêta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs
- One of the numbers ζ(5), ζ(7), ζ(9), ζ(11) is irrational
- Ramanujan’s Formula for ζ(2n + 1)
- GENERALIZED LAMBERT SERIES, RAABE’S COSINE TRANSFORM AND A GENERALIZATION OF RAMANUJAN’S FORMULA FOR
- Generalized Lambert series and arithmetic nature of odd zeta values
- Ramanujan's Lost Notebook
- Irrationality of infinitely many values of the zeta function at odd integers.
This page was built for publication: On Ramanujan's formula for \(\zeta(1/2)\) and \(\zeta(2m+1)\)