Finitistic dimension conjectures via Gorenstein projective dimension
From MaRDI portal
Publication:2247750
DOI10.1016/j.jalgebra.2021.10.026OpenAlexW3211313909WikidataQ122904092 ScholiaQ122904092MaRDI QIDQ2247750
Publication date: 17 November 2021
Published in: Journal of Algebra (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2006.02182
cotorsion pairtilting moduleGorenstein projective dimensionfinitistic dimensionscontravariant finiteness
Homological functors on modules (Tor, Ext, etc.) in associative algebras (16E30) Homological dimension in associative algebras (16E10)
Related Items
Auslander conditions and tilting-like cotorsion pairs ⋮ Homological dimension based on a class of Gorenstein flat modules ⋮ Infinitely generated Gorenstein tilting modules
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Foundations of commutative rings and their modules
- Cohen-Macaulay modules, (co)torsion pairs and virtually Gorenstein algebras.
- Relative homological algebra. Vol. 1
- Approximations and endomorphism algebras of modules. Volume 1: Approximations. Volume 2: Predictions.
- Extensions of homologically finite subcategories
- Strongly Gorenstein projective, injective, and flat modules
- On the finitistic dimension conjecture. III: Related to the pair \(eAe\subseteq A\).
- Extensions of covariantly finite subcategories
- Almost split sequences in subcategories
- Injective and flat covers, envelopes and resolvents
- Preprojective modules over Artin algebras
- Homological domino effects and the first finitistic dimension conjecture
- A homological bridge between finite and infinite-dimensional representations of algebras
- Gorenstein homological dimensions.
- Gorenstein dimensions
- Applications of contravariantly finite subcategories
- Gorenstein injective and projective modules
- Closure under transfinite extensions
- When the kernel of a complete hereditary cotorsion pair is the additive closure of a tilting module
- On the telescope conjecture for module categories.
- Critères de platitude et de projectivité. Techniques de platification d'un module. (Criterial of flatness and projectivity. Technics of flatification of a module.)
- Tilting theory and the finitistic dimension conjectures
- How To Make Ext Vanish
- Beyond totally reflexive modules and back
- Homological Dimension in Local Rings
- Finitistic Dimension and a Homological Generalization of Semi-Primary Rings
- Finite Projectivity and Contravariant Finiteness
- The finitistic dimension conjectures -- a tale of 3.5 decades
- Injective Dimension in Noetherian Rings
- Tilting modules and Gorenstein rings
- Tilting Cotorsion Pairs
- Homological and homotopical aspects of torsion theories
- Approximations and the little finitistic dimension of Artinian rings