Fokker-Planck and Fortet equation-based parameter estimation for a leaky integrate-and-fire model with sinusoidal and stochastic forcing
DOI10.1186/2190-8567-4-4zbMath1431.92011OpenAlexW2148361269WikidataQ43010224 ScholiaQ43010224MaRDI QIDQ2251600
André Longtin, Alexandre Iolov, Susanne Ditlevsen
Publication date: 14 July 2014
Published in: The Journal of Mathematical Neuroscience (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1186/2190-8567-4-4
Fokker-Planck equationfirst-passage timesstochastic neuron modelsFortet integral equationparameter estimation from stopping times
PDEs in connection with biology, chemistry and other natural sciences (35Q92) Biomechanics (92C10) Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics (82C31) Fokker-Planck equations (35Q84)
Related Items (11)
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- A review of the methods for signal estimation in stochastic diffusion leaky integrate-and-fire neuronal models
- Maximum likelihood analysis of spike trains of interacting nerve cells
- Bistability and the dynamics of periodically forced sensory neurons
- A first-passage-time analysis of the periodically forced noisy leaky integrate-and-fire model
- On the parameter estimation for diffusion models of single neuron's activities. I: Application to spontaneous activities of mesencephalic reticular formation cells in sleep and waking states
- A review of the integrate-and-fire neuron model: II. Inhomogeneous synaptic input and network properties
- Les fonctions aléatoires du type de Markoff associees à certaines équations linéaires aux dérivées partielles du type parabolique
- Estimating Parameters of Generalized Integrate-and-Fire Neurons from the Maximum Likelihood of Spike Trains
- Estimation of the input parameters in the Feller neuronal model
- Stochastic Processes for Physicists
- Maximum Likelihood Decoding of Neuronal Inputs from an Interspike Interval Distribution
- Stochastic Integrate and Fire Models: A Review on Mathematical Methods and Their Applications
- Maximum Likelihood Estimation of a Stochastic Integrate-and-Fire Neural Encoding Model
- Spiking Neurons and the First Passage Problem
- Representations of the First Hitting Time Density of an Ornstein-Uhlenbeck Process1
This page was built for publication: Fokker-Planck and Fortet equation-based parameter estimation for a leaky integrate-and-fire model with sinusoidal and stochastic forcing