An improvement of dimension-free Sobolev imbeddings in r.i. spaces
DOI10.1016/J.JFA.2014.04.011zbMath1312.46043OpenAlexW2012145860MaRDI QIDQ2253302
Alberto Fiorenza, Hans-Juergen Schmeisser, Miroslav Krbec
Publication date: 25 July 2014
Published in: Journal of Functional Analysis (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jfa.2014.04.011
fundamental functionimbedding theoremrearrangement-invariant Banach function spacesmall Lebesgue space
Spaces of measurable functions ((L^p)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) (46E30) Sobolev spaces and other spaces of ``smooth functions, embedding theorems, trace theorems (46E35)
Related Items (10)
Cites Work
- On dimension-free Sobolev imbeddings. II
- On dimension-free Sobolev imbeddings. I.
- Pointwise symmetrization inequalities for Sobolev functions and applications
- Isoperimetry and symmetrization for logarithmic Sobolev inequalities
- A direct approach to the duality of grand and small Lebesgue spaces
- On the integrability of the Jacobian under minimal hypotheses
- Best constant in Sobolev inequality
- New properties of small Lebesgue spaces and their applications
- Duality and reflexivity in grand Lebesgue spaces
- On small Lebesgue spaces
- Grand and small Lebesgue spaces and their analogs
- Optimal Sobolev imbeddings involving rearrangement-invariant quasinorms
- On extrapolation blowups in the \(l_{p}\) scale
- Espaces d'interpolation et théorème de Soboleff
- Convolution operators and L(p, q) spaces
- Extrapolation results of Lions-Peetre type
- An elementary proof of sharp Sobolev embeddings
- Tractable embeddings of Besov spaces into Zygmund spaces
- Optimality of Function Spaces in Sobolev Embeddings
- Decreasing rearrangements and $L^{p,q}$ of the Bohr group
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: An improvement of dimension-free Sobolev imbeddings in r.i. spaces