Bounded solutions for a class of semilinear equations on the Heisenberg group
From MaRDI portal
Publication:2256549
DOI10.1007/S11118-014-9437-2zbMath1308.31011OpenAlexW2075406662MaRDI QIDQ2256549
Publication date: 19 February 2015
Published in: Potential Analysis (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s11118-014-9437-2
Nonlinear elliptic equations (35J60) Analysis on real and complex Lie groups (22E30) Other generalizations (nonlinear potential theory, etc.) (31C45)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Wiener's criterion in potential theory with applications to nilpotent Lie groups
- The Dirichlet problem for sublaplacians on nilpotent Lie groups - geometric criteria for regularity
- Sublinear elliptic equations in \(\mathbb{R}{}^ n\)
- Carleman estimates for a subelliptic operator and unique continuation
- Liouville theorems for semilinear equations on the Heisenberg group
- Semilinear perturbations of harmonic spaces and Martin-Orlicz capacities: An approach to the trace of moderate \(u\)-functions.
- A note on Yamabe-type equations on the Heisenberg group
- Semilinear perturbations of harmonic spaces, Liouville property and a boundary value problem
- Entire bounded solutions for a class of sublinear elliptic equations
- Large solutions of sublinear elliptic equations
- Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérées
- Les fonctions surharmoniques dans l'axiomatique de Monsieur Brelot associées à un opérateur elliptique dégénéré. (Superharmonic functions in the axiomatics of Monsieur Brelot associated with a degenerate elliptic operator)
- Stratified Lie Groups and Potential Theory for their Sub-Laplacians
- Elliptic Partial Differential Equations of Second Order
This page was built for publication: Bounded solutions for a class of semilinear equations on the Heisenberg group