Ornstein-Uhlenbeck semi-groups on stratified groups
From MaRDI portal
Publication:2267508
DOI10.1016/j.jfa.2009.11.012zbMath1192.47042arXiv0907.1143OpenAlexW2126667074MaRDI QIDQ2267508
Publication date: 1 March 2010
Published in: Journal of Functional Analysis (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/0907.1143
One-parameter semigroups and linear evolution equations (47D06) Groups and semigroups of linear operators (47D03) Diffusion processes (60J60) Diffusion processes and stochastic analysis on manifolds (58J65) Probability theory on algebraic and topological structures (60B99)
Related Items
Asymptotics for the heat kernel on H-type groups, Strong hypercontractivity and logarithmic Sobolev inequalities on stratified complex Lie groups, Strong hypercontractivity and strong logarithmic Sobolev inequalities for log-subharmonic functions on stratified Lie groups, Revisiting the heat kernel on isotropic and nonisotropic Heisenberg groups*, Ornstein–Uhlenbeck operators and semigroups, Transportation inequalities for Markov kernels and their applications, Log-Sobolev inequalities for subelliptic operators satisfying a generalized curvature dimension inequality, Gaussian BV Functions and Gaussian BV Capacity on Stratified Groups
Cites Work
- Ornstein-Uhlenbeck processes on Lie groups
- On gradient bounds for the heat kernel on the Heisenberg group
- Coercive inequalities on metric measure spaces
- Harmonic analysis on the Heisenberg group
- Hypoelliptic heat kernel inequalities on the Heisenberg group
- Riesz transforms on deformed Fock spaces
- Estimation optimale du gradient du semi-groupe de la chaleur sur le groupe de Heisenberg
- The distribution of energy in the Brownian motion in the Gaussian field and analytic-hypoellipticity of certain subelliptic operators on the Heisenberg group
- Heat kernels for class 2 nilpotent groups
- Hardy Spaces on Homogeneous Groups. (MN-28), Volume 28
- A simple-minded computation of heat kernels on Heisenberg groups
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item