Hamiltonian monodromy via geometric quantization and theta functions
From MaRDI portal
Publication:2268978
DOI10.1016/j.geomphys.2009.11.012zbMath1263.53083arXiv0807.3642OpenAlexW2127806269MaRDI QIDQ2268978
Nicola Sansonetto, Mauro Spera
Publication date: 15 March 2010
Published in: Journal of Geometry and Physics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/0807.3642
Theta functions and abelian varieties (14K25) Geometric quantization (53D50) Theta functions and curves; Schottky problem (14H42)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Geometric quantization of Chern-Simons gauge theory
- Le problème général des variables actions-angles. (The general problem of action-angle variables)
- Quantum field theory and the Jones polynomial
- Monodromy in the champagne bottle
- Complex abelian varieties and theta functions
- Tata lectures on theta. III
- Quantum monodromy in integrable systems
- A note on focus-focus singularities
- The function epsilon for complex tori and Riemann surfaces
- Monodromy in two degrees of freedom integrable systems
- Hamiltonian monodromy via Picard-Lefschetz theory
- Geometric phases in classical and quantum mechanics
- The monodromy of the Lagrange top and the Picard-Lefschetz formula.
- Superintegrable Hamiltonian systems: Geometry and perturbations
- Symplectic manifolds and their Lagrangian submanifolds
- Flat connections and geometric quantization
- Low-dimensional unitary representations of 𝐵₃
- ON UNCERTAINTY, BRAIDING AND ENTANGLEMENT IN GEOMETRIC QUANTUM MECHANICS
- Braids, hypergeometric functions, and lattices
- On global action-angle coordinates
- Quantization, Classical and Quantum Field Theory and Theta Functions
- Quantum states in a champagne bottle
- Quantization and unitary representations
- Loop spaces, characteristic classes and geometric quantization
- Representations of the braid group \(B_3\) and of \(\text{SL}(2,\mathbb{Z})\).
- Quantum monodromy and Bohr-Sommerfeld rules