A generalized Kantorovich theorem for nonlinear equations based on function splitting
From MaRDI portal
Publication:2269952
DOI10.1007/s12215-009-0034-yzbMath1189.65120OpenAlexW2041807622MaRDI QIDQ2269952
Ioannis K. Argyros, Livinus Ugochukwu Uko
Publication date: 12 March 2010
Published in: Rendiconti del Circolo Matemàtico di Palermo. Serie II (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s12215-009-0034-y
numerical exampleBanach spacesNewton methodmajorant methodnonlinear equationsmajorizing sequencecenter-Lipschitz condition
Iterative procedures involving nonlinear operators (47J25) Numerical solutions to equations with nonlinear operators (65J15)
Related Items
Uses Software
Cites Work
- Sharp error bounds for Newton's process
- On the Newton-Kantorovich hypothesis for solving equations
- A weak Kantorovich existence theorem for the solution of nonlinear equations
- Error bounds for Newton’s process derived from the Kantorovich theorem
- Optimal Error Bounds for the Newton–Kantorovich Theorem
- On the Kantorovich Hypothesis for Newton’s Method
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item