Arithmetic differential operators on a semistable model of \(\mathbb{P}^1\)
DOI10.1007/s00209-018-2171-5zbMath1440.14102arXiv1410.1001OpenAlexW2963402995MaRDI QIDQ2272950
Deepam Patel, Tobias Schmidt, Matthias Strauch
Publication date: 17 September 2019
Published in: Mathematische Zeitschrift (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1410.1001
Homogeneous spaces and generalizations (14M17) Differentials and other special sheaves; D-modules; Bernstein-Sato ideals and polynomials (14F10) Classical groups (algebro-geometric aspects) (14L35) Linear algebraic groups over the reals, the complexes, the quaternions (20G20) Affine algebraic groups, hyperalgebra constructions (14L17)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Algebras of \(p\)-adic distributions and admissible representations
- Integral models of P^1 and analytic distribution algebras for GL_2
- ${\cal D}$-modules arithmétiques. II: Descente par Frobenius
- LOCALLY ANALYTIC REPRESENTATIONS OF VIA SEMISTABLE MODELS OF
- ${\scr D}$-modules arithmétiques. I. Opérateurs différentiels de niveau fini
- Un théorème de Beilinson-Bernstein pour les $\mathcal{D}$-modules arithmétiques
This page was built for publication: Arithmetic differential operators on a semistable model of \(\mathbb{P}^1\)