Homoclinic, heteroclinic and periodic orbits of singularly perturbed systems
DOI10.1007/s11425-017-9223-6zbMath1427.34078OpenAlexW2806454320MaRDI QIDQ2273753
Publication date: 18 September 2019
Published in: Science China. Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s11425-017-9223-6
singular perturbationlimit cycleaveraging methodhomoclinic and heteroclinic orbitsrotating vector fields
Topological structure of integral curves, singular points, limit cycles of ordinary differential equations (34C05) Geometric methods in ordinary differential equations (34A26) Bifurcation theory for ordinary differential equations (34C23) Averaging method for ordinary differential equations (34C29) Singular perturbations for ordinary differential equations (34E15) Homoclinic and heteroclinic solutions to ordinary differential equations (34C37)
Cites Work
- Improving the averaging theory for computing periodic solutions of the differential equations
- On the Hopf-zero bifurcation of the Michelson system
- Hopf bifurcation for some analytic differential systems in \(\mathbb R^3\) via averaging theory
- Bifurcations from nondegenerate families of periodic solutions in Lipschitz systems
- Slow-fast \(n\)-dimensional piecewise linear differential systems
- Hopf bifurcation in higher dimensional differential systems via the averaging method
- Nonlinear oscillations, dynamical systems, and bifurcations of vector fields
- Geometric singular perturbation theory for ordinary differential equations
- Averaging methods for finding periodic orbits via Brouwer degree.
- Limit cycles bifurcating from a degenerate center
- Dynamical systems. Examples of complex behaviour
- Hopf bifurcation of a generalized Moon-Rand system
- Averaging methods of arbitrary order, periodic solutions and integrability
- Limit-cycles and rotated vector fields
- Turning Points And Relaxation Oscillation Cycles in Simple Epidemic Models
- Canards, Folded Nodes, and Mixed-Mode Oscillations in Piecewise-Linear Slow-Fast Systems
- Standing Waves for Phase Transitions in a Spherically Symmetric Nozzle
- Corrigendum: Higher order averaging theory for finding periodic solutions via Brouwer degree (2014 Nonlinearity 27 563)
- Periodic Orbits near equilibria
- Analysis of a Singularly Perturbed Traveling Wave Problem
- Canard cycles and center manifolds
- Effects of (Small) Permanent Charge and Channel Geometry on Ionic Flows via Classical Poisson--Nernst--Planck Models
- Higher order averaging theory for finding periodic solutions via Brouwer degree
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Homoclinic, heteroclinic and periodic orbits of singularly perturbed systems