Estimation of the trend function and auto-covariance for spatial models
From MaRDI portal
Publication:2280093
DOI10.1016/j.crma.2019.11.002zbMath1434.62204OpenAlexW2621872532WikidataQ126770071 ScholiaQ126770071MaRDI QIDQ2280093
Publication date: 17 December 2019
Published in: Comptes Rendus. Mathématique. Académie des Sciences, Paris (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.crma.2019.11.002
Inference from spatial processes (62M30) Density estimation (62G07) Time series, auto-correlation, regression, etc. in statistics (GARCH) (62M10) Nonparametric tolerance and confidence regions (62G15)
Cites Work
- Kernel density estimation on random fields
- Kernel regression estimation for continuous spatial processes
- Nonparametric spatial prediction
- Minimax testing composite null hypotheses in the discrete regression scheme
- On local linear regression for strongly mixing random fields
- Moment inequalities for spatial processes
- NON-PARAMETRIC LEVEL SET ESTIMATION FOR SPATIAL DATA
- Estimation of the trend function for spatio-temporal models
- Smoothing parameter selection methods for nonparametric regression with spatially correlated errors
This page was built for publication: Estimation of the trend function and auto-covariance for spatial models