Convolution formula for the sums of generalized Dirichlet \(L\)-functions
DOI10.4171/rmi/1106zbMath1472.11149arXiv1709.01365OpenAlexW2957892156MaRDI QIDQ2280516
Olga G. Balkanova, Dmitriy A. Frolenkov
Publication date: 18 December 2019
Published in: Revista Matemática Iberoamericana (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1709.01365
symmetric square \(L\)-functionsKuznetsov trace formulaprime geodesic theoremgeneralized Kloosterman sumsgeneralized Dirichlet \(L\)-functions
Langlands (L)-functions; one variable Dirichlet series and functional equations (11F66) Spectral theory; trace formulas (e.g., that of Selberg) (11F72)
Related Items (5)
Uses Software
Cites Work
- Central value of the symmetric square \(L\)-functions related to Hecke-Maass forms
- Double Dirichlet series and quantum unique ergodicity of weight one-half Eisenstein series
- Eisenstein series of \(1\over 2\)-integral weight and the mean value of real Dirichlet L-series
- Sums involving the values at negative integers of \(L\)-functions of quadratic characters
- The cubic moment of central values of automorphic \(L\)-functions
- The mean value of symmetric square \(L\)-functions
- On the Kuznetsov formula
- Beyond endoscopy via the trace formula: 1. Poisson summation and isolation of special representations
- The binary additive divisor problem
- The prime geodesic theorem
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Convolution formula for the sums of generalized Dirichlet \(L\)-functions