Mathematical Research Data Initiative
Main page
Recent changes
Random page
Help about MediaWiki
Create a new Item
Create a new Property
Create a new EntitySchema
Merge two items
In other projects
Discussion
View source
View history
Purge
English
Log in

On the distribution of powers of a Gaussian Pisot number

From MaRDI portal
Publication:2288230
Jump to:navigation, search

DOI10.1016/j.indag.2019.12.002zbMath1436.11128OpenAlexW2995998842WikidataQ126562642 ScholiaQ126562642MaRDI QIDQ2288230

Toufik Zaimi

Publication date: 17 January 2020

Published in: Indagationes Mathematicae. New Series (Search for Journal in Brave)

Full work available at URL: https://doi.org/10.1016/j.indag.2019.12.002


zbMATH Keywords

Pisot numbersdistribution modulo oneGaussian Pisot numbers


Mathematics Subject Classification ID

PV-numbers and generalizations; other special algebraic numbers; Mahler measure (11R06) Distribution modulo one (11J71)


Related Items (1)

Quartic Salem numbers which are Mahler measures of non-reciprocal 2-Pisot numbers



Cites Work

  • Fonctions méromorphes dans le cercle-unité et leurs séries de Taylor
  • On the distribution of powers of a complex number
  • An arithmetical property of powers of Salem numbers
  • ON REAL PARTS OF POWERS OF COMPLEX PISOT NUMBERS
  • Sur les K-nombres de Pisot de petite mesure
  • Notions relatives de régulateurs et de hauteurs
  • K-nombres de Pisot et de Salem
  • On the conjugates of certain algebraic integers
  • Complex Pisot numbers in algebraic number fields
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item


This page was built for publication: On the distribution of powers of a Gaussian Pisot number

Retrieved from "https://portal.mardi4nfdi.de/w/index.php?title=Publication:2288230&oldid=14865903"
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information
MaRDI portal item
This page was last edited on 2 February 2024, at 14:01.
Privacy policy
About MaRDI portal
Disclaimers
Imprint
Powered by MediaWiki