Structure of gauge-invariant Lagrangians
DOI10.1007/s00009-019-1454-3zbMath1433.53034arXiv1903.00443OpenAlexW2994976659WikidataQ126587658 ScholiaQ126587658MaRDI QIDQ2295436
María Eugenia Rosado María, Jaime Muñoz Masqué, Marco Castrillón López
Publication date: 13 February 2020
Published in: Mediterranean Journal of Mathematics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1903.00443
gauge invariancejet bundlesbundle of connectionsstructure of Lie algebrascurvature mappingfunctionally independent gauge-invariant Lagrangians
Variational principles in infinite-dimensional spaces (58E30) Nonlinear first-order PDEs (35F20) Yang-Mills and other gauge theories in quantum field theory (81T13) Jets in global analysis (58A20) Applications of global differential geometry to the sciences (53C80) Group actions and symmetry properties (58D19) Connections (general theory) (53C05) Variational problems concerning extremal problems in several variables; Yang-Mills functionals (58E15)
Related Items (2)
Cites Work
- Fonctions différentiables invariantes sous l'opération d'un groupe réductif
- Lie groups and Lie algebras III. Structure of Lie groups and Lie algebras. Transl. from the Russian by V. Minachin
- Gauge invariance and variational trivial problems on the bundle of connections.
- The geometry of gauge-particle field interaction: A generalization of Utiyama's theorem
- Hamiltonian structure of gauge-invariant variational problems
- Complex Analytic Connections in Fibre Bundles
- The Yang-Mills equations over Riemann surfaces
- The geometry of the bundle of connections
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Structure of gauge-invariant Lagrangians